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Andrew W. Moore
Carnegie Mellon University, School of Computer Science
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Abstract

Can reinforcement learning ever become a practical method for real control
problems? This paper begins by reviewing three reinforcement learning al-
gorithms to study their shortcomings and to motivate subsequent improve-
ments. By assuming that paths must be continuous, we can substantially
reduce the proportion of state space which the learning algorithms need ex-
plore. Next, we introduce the parti-game algorithm for variable resolution
reinforcement learning. In addition to exploring state space, and devel-
oping a control policy to achieve a task, parti-game also learns a kd-tree
partitioning of state space. Some experiments are described which show
parti-game in operation on a non-linear dynamics problems and a path
learning/planning task in a 9-dimensional configuration space.

1 Reinforcement Learning

Reinforcement Learning (RL) [Sutton, 1984] is a promising method for
robots to program and improve themselves. In this paper we discuss a
number of ways to make it more practical. We begin by briefly reviewing
three RL algorithms: Q-learning [Watkins, 1989], Dyna [Sutton, 1990] and
prioritized sweeping [Moore and Atkeson, 1993, Peng and Williams, 1993],
and their performance on a maze problem. We then consider how the addi-
tion of some extra assumptions permits further versions of these algorithms
which require less exploration of state space and which are more resistant
to the curse of dimensionality.

A working RL system would be highly autonomous because it makes only
very weak assumptions about the nature of the task to be controlled—that




it is a Markov Decision Task. Having made that assumption, the human
programmer needs only to define a cost function

c: State x Action — ®. (1)

It is then supposedly an entirely automatic process for the RL algorithm to
learn the control policy which minimizes the expected sum of future costs

o0

E[ ), c(s(®)a(®)]: (2)

t=NOW

This sum is well-defined if all states can eventually reach an absorbing state
of zero cost. There are a number of alternatives to this basic formulation,
such as a sum of discounted future costs, a finite horizon sum, and mean
future cost. The above equation is conceptually the simplest.

2 Three RL algorithms

In this section we briefly review three reinforcement learning algorithms.
We will examine their performance on the maze shown in Figure 1. There
are always four actions: North, East, South and West. Each step costs one
unit, and the controller does not know in advance where the goal is.

Goal

e —

Figure 1: An example maze
problem. This uses a 4,096-
| cell grid, in which some
squares are barriers. The
- start state -is the bottom
rightmost cell and the goal
is the top rightmost.

Start




2.1 Q-learning

In this paper, for ease of exposition, we will restrict the discussion of learning
control problems to deterministic systems in which there is a goal state which
must be reached with minimum accumulated cost. Q-learning achieves this
by maintaining a table of Q-values, indexed by states and actions.

Estimated minimum cost to goal if
Q(s,a) = we begin at state s, apply action a, (3)
and subsequently perform optimally

If the controller is in state s, it chooses the action a to minimize Q(s,a).
It then observes the one-step cost ¢(s, a) of performing the action and the
resultant state s’. The estimate of Q(s, @) is now improved to

Qs,0) (s, 0) + min Q(, ). @

The Q table is initialized to zero. Thus, any untried state-action pair
will look attractive to the controller. Indeed, during the early stages of
learning, Q-learning updates tend to bias the system towards unexplored
states. Under repeated trials, this process is guaranteed to converge to op-
timal [Watkins, 1989, Koenig and Simmons, 1993]). In non-deterministic
environments, a more complex update rule is required but convergence to
optimal can still be assured.

For our example maze, Q-learning requires 926,682 state transitions be-
fore convergence to optimal.

2.2 Dyna

Q-learning takes a long time to converge, even on this simple determinis-
tic example. It can be improved by using extra memory to construct a
state-transition graph (a learned “model”) of where it has been. One such
algorithm is DYNA [Sutton, 1990], which interleaves each physical execution
of a state transition with real-time planning. On our problem we permit it to
perform 200 steps of asynchronous dynamic programming for every physical
step. 200 states are chosen at random, and for each state s, the minimum-
cost-to-goal estimate for the state is updated with Bellman’s equation:

J*(s) + min(c(s, @) + J*(NEXT(s, a))) (5)
where J*(s) is the estimated minimum-cost-to-goal from s and NEXT(s, a) is

the next state in the empirically-determined graph. Dyna takes 39,329 state
transitions for the same maze—a large improvement.




2.3 Prioritized Sweeping and Queue-Dyna

Dyna still contains an inefficiency—it applies Bellman updates on randomly
chosen states. Instead, the states can be selected using a technique called
prioritized sweeping [Moore and Atkeson, 1993], which is closely related to
an independently invented technique called Queue Dyna [Peng and Williams,
1993]. In these methods, Bellman updates are applied to a fixed number (in
our example, 200) of the highest priority states. A state’s priority is an
estimate of how much it could change if a Bellman update were applied.
When a state is updated, and its J* value subsequently changes by amount
A, then the immediate predecessors are alerted that they too might change
by up to A, and are promoted in the priority queue accordingly.

When prioritized sweeping was run on the problem in Figure 1 it required
23,282 steps to achieve an optimal policy.

3 The continuity assumption

It is unlikely that any algorithm could reduce the learning time substantially
further. This is because the system is not told in advance what the arc costs
are, or where the goal is. Every state-action combination must be tried
to ensure it is not a zero-cost arc connected straight to the goal. In our
maze example there are approximately 16, 000 state-action pairs. For larger
control tasks it is entirely impractical to expect the controller to test every
state-action pair.
A solution is to tell the controller three things in advance:

e Where the goal is.
e What the one-step cost function c(s, @) is.
e That the only possible paths through state space are continuous.

For a state space discretized into cells, the continuity assumption can easily
be incorporated into the same state transition graph that the system builds
during the Dyna and prioritized sweeping algorithms. This graph is initial-
ized with the knowledge that the only possible successors of any state are
those corresponding to adjacent grid-cells.

This default assumption means that some cells need never be physically
explored. Figure 2 shows the set of states which were visited by priori-
tized sweeping when it was used in conjunction with the continuous paths

10




Table 1: Number of steps until the optimal path is learned for the maze in
Figure 1.

Q-learning 926,682
Dyna 39,329
Prioritized Sweeping 23,282

Prioritized Sweeping +
Continuous path assumption | 3,772

assumption. The J* values of all states (visited and unvisited) were com-
puted as before, but all the unvisited states were computed with the default
assumption that all neighboring cells could be reached in one step. Even
if some neighboring cells are actually inaccessible, this assumption never
overestimates J*. Thus learning consists of beginning with an optimistic
assumption that all transitions are attainable, and only ever testing those
transitions which could possibly lie on a superior path to the current favorite.
The results on our example problem are summarized in Table 1.

Figure 2: The cells which
were visited during learning
by prioritized sweeping sup-
plemented with the continu-
ous paths assumption. The
start state is the bottom-
rightmost cell and the goal
is the top rightmost.

11




4 Variable Resolution Reinforcement Learning

The continuity assumption can reduce the number of states which the robot
needs to explore. However, it is still necessary to represent, and reason
with, all the states in the grid. Despite the efforts of the previous section,
above two or three dimensions this can render reinforcement learning im-
practical as it falls to the same “curse of dimensionality” that bars Dynamic
Programming from high dimensional problems [Bellman, 1957].

We are currently investigating ways of dealing with this problem by
learning variable resolution partitionings of state space. Here, we present
an algorithm, parti-game, designed for this purpose. The algorithms in
the previous section all have non-deterministic counterparts. The version
of parti-game reported here is, however, only applicable to deterministic
problems. There are two further restrictions:

e A good, but not necessarily optimal, solution must be found in rea-
sonable time.

e A local greedy controller is available, which we can ask to move greedily
towards any desired state. There is no guarantee that a request to the
greedy controller will succeed. For example, in a maze a greedy path
to the goal would soon hit a wall.

4.1 Essentials Of The Parti-Game Algorithm

Here, there is only space to summarize the algorithm. Full detail is given
in [Moore and Atkeson, 1994]. The state space is broken into partitions
by a kd-tree [Friedman et al., 1977]. The controller can always sense its
current (continuous valued) state, and can cheaply compute which partition
it is in. The space of actions is also discretized so that in a partition with
N neighboring partitions, there are N high level actions. Each high level
action corresponds to a local greedy controller, aiming for the center of the
corresponding neighboring partition.

Each partition keeps records of all the occasions on which the system
state has passed through it. Along with each record is a memory of which
high level action was used (i.e. which neighbor was aimed for) and what the
outcome was. Figure 3 provides an illustration.

Given this database of

(partition, high level action, outcome)

12




Partition 1 Partition 2

Figure 3: Three trajectories
starting in partition 1, us-
BARRIER ing high level action “Aim
at partition 2”. Partition 1
remembers three outcomes.
ey (Part 1, Aim 2 — Part 2)
2 . (Part 1, Aim 2 — Part 1)
7 (Part 1, Aim 2 — Part 3)

P Partition 3

»».’",,.,». .

triplets, and our knowledge of the partition containing the goal state, we can
try to compute the best route to the goal. The standard approach would
be to model the system as a Markov Decision Task in which we empirically
estimate the partition transition probabilities. However, the probabilistic
interpretation of coarse resolution partitions can lead to policies which get
stuck. Instead, we use a game-theoretic approach, in which we imagine an
adversary. This adversary sees our choice of high level action, and is allowed
to select any of the observed previous outcomes of the action. Partitions are
scored by minimaxing: the adversary plays to delay or prevent us from
getting to the goal and we play to get to the goal as quickly as possible.

Asin Section 3, if we have never before attempted an action in a partition
we optimistically it will take us to the correct neighbor. This optimism
provides an aggressive exploration strategy.

Whenever the system’s continuous state passes between partitions, the
database of state transitions is updated and, if necessary, the minimax scores
of all partitions are updated. If real-time constraints do not permit full re-
computation, the updates take place incrementally in a manner similar to
prioritized sweeping.

As well as being robust to coarseness, the game-theoretic approach also
tells us where we should increase the resolution. Whenever we compute that
we are in a losing partition we perform resolution increase, hoping that the
route to the goal is hidden by overly coarse resolution. From the continuous
paths assumption, we know that any route from our current state to the goal

13



must pass through the border between the sets of losing and non-losing cells.
And so it is at the border that we increase the resolution. We first compute
the complete set of connected partitions which are also losing partitions. We
then find the subset of these partitions which border some non-losing region,
and increase the resolution of all these border states by splitting them along
their longest axes.

5 Parti-game Experiments

Figure 4 shows a similar maze to our original example in Figure 1. As in the
carlier experiments, the algorithm begins with no knowledge of where the
obstacles are, and must discover the path to the goal by learning. Figure 5
shows the partitioning of state space, and the resultant path to the goal,
after parti-game has finished learning. The final partitioning of state space
uses only 344 partitions.

Figure 4: A 2-d continuous
maze.

Start

5.1 Non-linear dynamics

Parti-game is not restricted to maze navigation problems. Figure 6 depicts
a frictionless puck on a bumpy surface. It can thrust left or right with a
maximum thrust of +4 Newtons. Because of gravity, there is a region near
the center of the hill at which the maximum rightward thrust is not strong
enough to accelerate up the slope. Thus if the goal is at the top of the slope,

14
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a strategy which proceeded by greedily choosing actions to thrust towards
the goal would get stuck.

Figure 6: A frictionless puck
acted on by gravity and a
horizontal thruster.  The
puck must get to the goal as
quickly as possible. There
are bounds on the maximum
thrust.

mg -4<F<4

-1 ] 1
Position (x)

This is made clearer in the phase space diagram of Figure 7. The puck’s
state has two components, the position and velocity. The hairs show the
next state of the puck if it were to thrust rightwards with the maximum
legal force of 4 Newtons. Notice that at the center of state space, even when
this thrust is applied, the puck velocity decreases and it eventually slides
leftwards. The optimal solution for the puck task, depicted in Figure 8, is to

15
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initially thrust away from the goal, gaining negative velocity, until it is on
the far left of the diagram. Then it thrusts hard right, to build up sufficient
energy to reach the top of the hill.

Figure 9 shows the trajectory through state space during the very first
learning trial, while it is exploring and developing its initial partitioning.
Figure 10 shows the resulting partitioning and the subsequent trajectory: on
its second trial it has already learned the basic strategy of “begin by getting
a negative velocity, moving backwards, and only then heading forward with
full thrust.”

The local greedy controller which parti-game uses is bang-bang. To aim
for a partition “north” in state space—a partition with greater velocity—it
thrusts with the maximum permissible force of +4N. To aim for a lower
velocity partition it thrusts with —4N. To aim for an “east” or “west”
partition, the local controller merely controls its velocity (using a trivial
linear controller) to be equal to the velocity of the center of the destination
partition. Notice that if the current partition’s velocity is greater than
zero it is hopeless to greedily aim for the partition on the left. It is also
hopeless to aim at the partition on the right if the current partition has
negative velocity. In the experiments below, parti-game is given this extra
information. Forcing parti-game to learn this from experience approximately
doubles the learning time.

16
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Figure 8: Minimum-time Figure 9: The trajectory of Figure 10: The trajectory
path for the puck on the the very first trial, while the and partitioning of the sec-
hill. The optimal value system performed its initial ond trial.

function is shown by dots. exploration of state space.

The shorter the time to
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dot.

5.2 A higher dimensional state space

Figure 11 shows a 9-joint snake-like robot manipulator which must move to
a specified configuration on the other side of a barrier. Again, no kinematics
model or knowledge of obstacle locations are given: the system must learn
these as it explores. It takes seven trials before converging on the solution
shown in Figure 12, which requires about two minutes run-time on a SPARC-
I workstation. The exploration-length versus final-path-length ratio is 60.
Interestingly, the final number of partitions is only 85. This compares very
favorably with the 512 partitions which would be needed if the coarsest non-
trivial uniform grid were used: 2 X 2 X - --x 2. Unsurprisingly, for the 9-joint
snake, this 512 uniform grid is too coarse, and in experiments we performed
with such a grid the system became stuck, eventually deciding the problem
was impossible.

6 Related work

A few other researchers have attempted to overcome dimensionality prob-
lems by decompositions of state space. [Simons et al., 1982] attempted
it for 3-degree-of-freedom force control. Their method gradually learned
by recording cumulative statistics of performance in partitions. More re-

17
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Figure 11: A nine-degree-of-
freedom planar robot must
move from the shown start
configuration to the goal.
The joints are shown by
small circles on the left-hand
diagram which depicts two
configurations of the arm:
the start position and the
goal position. The solu-
tion entails curling, rotat-
ing and then uncurling. It
may not intersect with any
of the barriers, the edge of
the workspace, or itself.

Figure 12:  Parti-game’s
learned solution for the nine-
degree-of-freedom snake.



cently, we produced a non-learning method based on variable resolution
dynamic programming [Moore, 1991]. [Chapman and Kaelbling, 1991] pro-
posed an interesting algorithm which used more sophisticated statistics to
decide which attributes to split. Their objectives were very hard and they
obtained only limited empirical success. In [Dayan and Hinton, 1993] a 2-
dimensional hierarchical partitioning was used on a grid with 64 discrete
squares, and [Kaelbling, 1993] gives another hierarchical algorithm. Both
use Q-learning, instead of model-based learning, and also require a prede-
fined decomposition of state space into partitions.

Geometric Decompositions have also been used fairly extensively in Robot
Motion Planning (e.g. [Brooks and Lozano-Perez, 1983, Kambhampati and
Davis, 1986]), summarized in [Latombe, 1991]. The principal difference is
that they assume that a model of the environment is supplied to the system
in advance so that there is no learning or exploration capability.

7 Conclusion

This paper began by demonstrating how the removal of some inefficiencies
in basic reinforcement learning algorithms can substantially improve the
rate of convergence. One of these ideas—assuming paths through state
space must be continuous—is the backbone of the splitting criterion of parti-
game. There are many interesting avenues which remain open for further
investigation.
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